
The Design of a Fault-Tolerant COTS-Based Bus Architecture for
Space Applications*

Savio N. Chau Leon Alkalai Ann T. Tai
Center for Integrated Space Microsystems IA Tech, Inc.

Jet Propulsion Laboratory 1050 1 Kinnard Avenue
California Institute of Technology Los Angeles, CA 90024

Pasadena, CA 9 1 109

Abstract

The high-performance, scalability and miniaturization requirements together with the power, mass
and cost constraints mandate the use of commercial-off-the-shelf (COTS) components and standards in
the X2000 avionics system architecture for deep-space missions. In this paper, we report our experi-
ences and findings on the design of an IEEE 1394 compliant fault-tolerant COTS-based bus architecture.
While the COTS standard IEEE 1394 adequately supports power management, high performance and
scalability, its topological criteria impose restrictions on fault tolerance realization. To circumvent the
difficulties, we derive a “stack-tree’’ topology that not only complies with the IEEE 1394 standard but
also facilitates fault tolerance realization in a spaceborne system with limited dedicated resource re-
dundancies. Moreover, by exploiting pertinent standard features of the 1394 interface which are not
purposely designed for fault tolerance, we devise a comprehensive set of fault detection mechanisms to
support the fault-tolerant bus architecture.

Keywords: COTS, IEEE 1394, space applications, bus network reliability, fault-tolerant bus architecture

Submission Category: Regular Paper

Principal Contact: Leon Alkalai, Leon . A l k a l a j 8 j p l . nasa . gov

*The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space Administration.

1 Introduction

Starting in FY 98, NASA's Office of Space Science has initiated the Advanced Spacecraft Systems Devel-
opment Program, also known as X2000, to develop advanced spacecraft technologies for future deep-space
exploration missions. One of the focus technology development areas is advanced avionics technologies
being developed at the newly established Center for Integrated Space Microsystems (CISM), a Center of
Excellence at NASA's Jet Propulsion Laboratory [13. The main focus of CISM is the development of highly
integrated, reliable, and highly capable micro-avionics systems for deep-space, long-term survivable, au-
tonomous robotic missions.

The X2000 Program is aimed at delivering a new generation of spacecraft systems every three years, to
real flight projects (that is, to the missions) [2]. Currently, there are at least five flight projects that have been
identified as direct customers of the X2000 First Delivery technologies in the year 2000, namely,

Europa Orbiter will orbit the moon of Jupiter that has recently been imaged by the Galileo spacecraft. The
high radiation environment is a challenge, requiring special electronics design, and extensive radiation
shielding. Reduction of mass is critical to the mission success.

Pluto/Kuiper Express will be a mission to image the planet Pluto and go beyond to explore the Kuiper Belt.
Long-term survivability, low-power, and autonomous operations are the challenges.

Solar Probe will perform science measurements heading directly to the Sun, within several solar radii.
Operating through extreme temperature environments and radiation is the challenge.

Champollion will rendezvous with a comet, land on its nucleus, and sample the comet, performing in-situ
measurements. Advanced miniaturization is essential.

Mars Sample Return is a mission engaged by NASA in a coordinated international multiyear robotic ex-
ploration of Mars, with the goal of returning samples to Earth. Reduction in mass is essential, as well
as on-board autonomous operations.

The earliest launch of the above listed missions is in 2003 (Europa and Kuiper Express). The target
missions for the Second Delivery are currently being considered. One should also note that most of the
technologies being developed by X2000 are also applicable to Earth orbiting missions. Since the goal of
the X2000 Program is to develop multi-mission spacecraft systems technologies for flight projects, the main
challenge was to define a scalable, open architecture that can address different requirements (which are
often conflicting) such as radiation, temperature, mission complexity, mass, power and volume constraints
[3]. Among other things, the most severe constraint is the overall cost of the missions.

With the successful Mars Pathfinder landing on Mars on July 4th 1997, NASA has entered a new era of
faster, better, cheaper space exploration (at $150 million, less than some Hollywood movie productions such
as Titanic). Under stringent cost constraints, Pathfinder used many commercially available or Commercial
Off The Shelf (COTS) technologies. However, while the Mars Pathfinder mission was designed for a 30-day
primary mission success (it actually lasted several months), the deep-space missions targeted by the X2000
Program must survive up to 15 years (e.g., PlutoKuiper Express).

In this paper, we report in detail our current work at CISM on the design of a distributed, scalable, fault-
tolerant multi-mission avionics architecture based on COTS technology (which is referred to as “X2000
architecture” in the remainder of the paper). The architecture is currently the baseline for the Europa Orbiter
and Pluto/Kuiper Express projects, both scheduled for launch in the year 2003 [4]. In the X2000 architecture,
the multiple computing nodes and devices are symmetric, which means that the roles of computing nodes
are interchangeable while devices are treated as intelligent nodes in the network. Moreover, they share a
common redundant bus architecture. Most notably, all interfaces used in this distributed architecture are
based on COTS. Specifically, the local computer bus is the Peripheral Component Interface (PCI) bus [5];
the “system bus” is the IEEE 1394 high-speed bus [6, 71; and the engineering bus is the 12C bus [8]. Using
strictly COTS Intellectual Property (IP) for all component interfaces is a crucial step toward significant
reduction of both system development cost and target cost of the developed system (recurring cost), as
COTS interfaces enable other COTS products and IPS to be accommodated by the architecture [2]. The real
challenge is to deliver a highly reliable and long-term survivable system based on such an architecture, where
the COTS IPS are not developed for mission-critical applications. The spirit of our solution is to maximize
the use of standard features of a COTS product in an innovative manner to circumvent its shortcomings,
though these standard features may not be originally designed for highly reliable systems.

In the following section, we provide more information about the baseline X2000 architecture, the con-
cept of using COTS in the context of X2000 Program, and the features and disadvantages of IEEE 1394
we exploit and circumvent, respectively, in implementing a fault-tolerant bus architecture. In Section 3,
we elaborate the stack-tree topology which is IEEE 1394 compliant and exploits IEEE 1394’s port-disable
feature for bus network reliability. In Section 4, we describe our fault detection mechanisms that support
the fault-tolerant bus architecture. Section 5 presents the methods and results of reliability evaluation for
the stack-tree topology based bus network. In the concluding remark, we summarize what we have accom-
plished in this effort and discuss our findings.

2 X2000 Baseline Architecture: A COTS-Based Approach

The proposed baseline X2000 First Delivery avionics architecture is shown in Figure 1, which covers all
spacecraft avionics functions including: 1) on-board spacecraft commanding and operations, 2) power man-
agement and distribution, 3) science data storage and on-board science processing, 4) telemetry collection,
management and downlink, 5) spacecraft navigation and control, 6) autonomous operations for on-board
planning, scheduling, autonomous navigation fault-protection, isolation and recovery, etc., and 7) interfac-
ing to numerous device drivers - both “dumb”and “intelligent” device drivers.

The X2000 is a distributed, symmetric architecture with multiple computing nodes and real-time devices
connected by a reliable and redundant set of buses. All of the buses that are being used are based on COTS
IPS which have been competitively procured. This approach is driven and justified by the requirements of
cost reduction for the total system and system development. The COTS buses provide a system level inter-
face to both low-bandwidth (dumb) devices, as well as intelligent devices with embedded micro-controllers.

Further, each computing node consists of 1) a high-performance processor module (high-performance

2

I - l l I I I I I J PC Buses
.

switches devlces

Figure 1: Baseline X2000 First Delivery Avionics Architecture

for space applications implies a speed around 100 MIPS), 2) a 128 Mbytes of local (DRAM) memory, and
3) a 128 Mbytes of on-board non-volatile storage for critical spacecraft information as well as science data.
All of these modules communicate via an inter-module 33 MHz PC1 bus. The I/O module also provides for
the redundant IEEE 1394a interface to other computer nodes and device drivers. The same I/O module also
provides the 12C interface which is a low-bandwidth engineering bus.

All the computing nodes over the 1394 bus can be used in a symmetric fashion to control the on-board
spacecraft functions. Moreover, the computer redundancy will be exploited for additional on-board capabil-
ities such as fault-tolerant operations, dynamic fault-detection, on-board software verification for software
upgrades. Many of the on-board functions in the distributed architecture will be used at the discretion of the
target missions based on available power constraints, mission specific requirements, etc.

2.1 Concept of COTS in the Context of X2000 Architecture

As the term “COTS” has a number of different interpretations, it is important to briefly elaborate what we
do and what we do not mean by COTS in the context of X2000 architecture. Some interpretations of COTS
for space applications imply the direct use of commercial parts, components, or systems. This was certainly
the case in Mars Pathfinder where commercial DRAMS were used in the flight computer, and a commercial
modem was used as part of the communication system with the Sojourner Rover. In the X2000 architecture,
the term COTS has a unique interpretation. In particular, since at least one of the target X2000 customers,
namely, Europa, requires the tolerance of high-radiation environments, all the critical electronic components
have to be fabricated on specialized semiconductor foundries. Therefore, for the X2000 architecture, we
have decided to “procure” COTS IPS for all inter-component interfaces, which in turn, enables other COTS
products and COTS IPS to be incorporated into the archtecture. While the IPS are COTS products, the actual
fabrication of chips and other components are basically carried out by radiation hardened foundries. In that
sense, the actual components are COTS IP based and specialized for space use, while the actual interfaces,
protocols, etc. are all COTS standard compliant. With this approach, we will reap the benefits of COTS,
namely, lower cost of system development, test and integration, as well as lower target recurring cost, while
meeting the radiation requirements of our target missions.

3

2.2 Rationale for Selection of IEEE 1394 Bus Architecture

In the process of selecting the high-speed and low-power buses, many commercial interfaces have been
examined. The candidates for the high-speed bus included the IEEE 1394, Fiber Channel, Universal Serial
Bus (USB), Fast Ethernet, Serial Fiber Optic Data Bus (SFODB), ATM, Myrinet, FDDI, AS1773, and
SPI. Many of these buses (e.g., USB, AS1773, and SPI) fail to meet a projected requirement of 40 Mbps.
Others have high power consumption which is unacceptable by deep space applications (e.g., Fiber Channel,
SFODB, ATM, and Myrinet). Some of them are not suitable for real-time applications because of the
indeterminacy of bus latency. Another important consideration is that the bus should have either radiation-
hardened components or an ASIC core design that is portable to a rad-hard foundry. A rigid evaluation
based on these factors results in the selection of the IEEE 1394 bus.

Similar criteria were given to the low-power bus selection with special emphasis on low-power con-
sumption and much less consideration for performance. The candidates included the I2C, Controller Area
Network (CAN), J1859, Low Power Serial Bus (LPSB, a 1553 Bus modified for low power), MicroLAN,
and Access Bus. Our trade study shows that the 12C is the best compromise.

The 1394 and 12C are not the ideal buses from the traditional fault tolerance point of view. Although the
1394 bus has some fault detection features, its fault isolation capability is mediocre and it does not directly
provide us with fault recovery mechanisms such as built-in redundancy and cross-strapping. Moreover,
IEEE 1394 mandates a tree topology that is in general vulnerable to network partitioning. Nonetheless, our
tradeoff study justifies the selection of these two buses because of their low cost and substantial commercial
support. The selection of 1394 and 12C enables the X2000 Program to procure COTS ASIC core designs,
which can be integrated into a single chip. It is estimated that this approach will reduce the design effort
by 30% when compared with the Cassini ASIC design, while the complexity of the ASIC is increased by
400%. Moreover, COTS products required by IEEE 1394 and 12C implementation, such as bus monitors,
prototype boards, and device drivers are readily available, which in turn, leads to further big savings.

2.3 IEEE 1394: Pertinent Features and Restrictions for Fault Tolerance

The IEEE 1394 bus is intended to be used for commercial applications such as multimedia and portable
phones. The current version of the IEEE 1394 bus can support data rates of 100 Mbps, 200 Mbps, and 400
Mbps for the cable implementution, and 50 Mbps and 100 Mbps for the backplane implementation. Higher
data rates will be attainable in the forthcoming IEEE 1394b. We have selected the cable implementation due
to its extensive commercial support. Accordingly, unless it is explicitly stated, all discussions in this paper
refer to the cable implementation.

Since the IEEE 1394 bus is designed for real-time multimedia applications, special attention has been
paid to guarantee that data can be delivered in time. Hence, the IEEE 1394 bus implements a technique
called isochronous tmnsuction. All the nodes requiring on-time delivery are called isochronous nodes.
Once every 125 p s (an isochronous cycle), each isochronous node has to arbitrate but is guaranteed a time
slot (allocated bus bandwidth) to send out its isochronous messages. At the beginning of each isochronous
cycle, the root sends out a cycle start message and then the isochronous transaction will follow. Within each

4

isochronous cycle, 80% of the time is available to the isochronous transactions. The protocol of the IEEE
1394 bus is shown in Figure 2.

Subaction (long) Isochronous (short) Subaction (long)

Cycte Xm
stali delay Ack (short)

: v
./

Cycle
Nominal cycle

Cycle Cycle

Figure 2: IEEE 1394 Protocol

While the isochronous cycles guarantee bandwidth and tightly bounded bus latency, it does not assure
reliable delivery since no acknowledgment is required. On the other hand, asynchronous transactions require
acknowledgment and therefore can guarantee reliable delivery. However, the bandwidth of asynchronous
transaction is not guaranteed because it is allotted only 20% of the isochronous cycle, while many nodes
may be arbitrating for that time slot. To avoid starving nodes, the asynchronous transaction employs a fair
arbitration scheme, so that every node can send message only once in each fair arbitration cycle. A fair
arbitration cycle can span over many isochronous cycles, depending on how much of each cycle is used up
by isochronous transactions and how many nodes are arbitrating for asynchronous transactions. The end of
a fair arbitration cycle is signified by an arbitration reset gap. As described in Section 4, in implementing
a fault-tolerant bus architecture, we exploit the characteristics of the protocol such as gap timing for fault
detection and isolation.

As mentioned earlier, the cable implementation of IEEE 1394 mandates a tree topology. Although there
are various types of tree structure, for space applications, it is preferred to have a “regular” topology (in the
sense that the topological structure can be easily maintained as nodes are added or deleted from the system)
because it can simplify the test and integration processes for substantial cost saving. Therefore, the stack-
tree topology depicted in Figure 3 is proposed, where a node is either a flight computer or a device. There
are three physical layer ports in each node. For each stem node, two or more of these ports are connected to
the other nodes, while a leaf node has only one port connected. Furthermore, each connection in Figure 3 is
actually two twisted wire pairs, referred to as TPARPA* and TPB/TPB* (“*” symbolizes the complement
signal). The TPA and TPB signals are designed for arbitration, data transmission, node insertion/removal
detection, and indication of node data rate. We take advantage of this standard feature in designing the
detection mechanisms for certain bus failure modes, such as babbling nodes (described in Section 4).

During bus startup or reset, the bus will go through an initialization process through which each node
will get a physical node ID. In addition, the root (cycle master), bus manager, and isochronous resource
manager will be elected. The root mainly is responsible for sending the cycle start message and acts as the
central arbitrator for bus requests. The bus manager is responsible to acquire and maintain the bus topology.
The isochronous resource manager is responsible for allocating bus bandwidth to isochronous nodes. The
root, bus manager, and isochronous resource manger are not fixed, so that any qualified nodes can be elected

5

to take these roles when needed. Clearly, this dynamic initialization feature can be utilized to support bus
network reconfiguration.

Once the bus initialization is complete, the bus will enter the normal operation. In either the isochronous
or asynchronous mode, any node wishes to send data must arbitrate for the bus. The arbitration is carried
out by the two twisted wire pairs TPA and TPB. A useful feature worth to mention is that the signaling state
(TPA, TPB) used in bus arbitration contains comprehensive information about the status of the nodes and
the bus network, which can be used for fault monitoring.

Note that the stack-tree topology shown in Figure 3 has a potentially serious drawback. That is, a tree
topology by itself is not fault tolerant as any single link failure will partition the tree into two segments and
any single node failure can break the tree into three parts. What makes the design more difficult is that spare
nodes dedicated for fault tolerance are not permitted in the X2000 architecture due to power constraint.
Although various schemes of fault-tolerant bus network have been proposed in research literatures (see
[9, lo], for example), the restrictions from 1394 and from our application prevent us from utilizing those
schemes since the majority of them involve either loops or spare nodes.

There are some fault detection provisions such as CRC in the 1394 standard, but they are inadequate to
ensure the reliability required for long-life missions such as Pluto/Kuiper Express (a 12 to 15 year mission).
On the other hand, IEEE 1394a [l l] provides an employable feature called “port-disable,” which allows us
to implement a 1394 compliant reconfigurable bus architecture, though this feature is not purposely designed
for fault tolerance. The spirit of our solution is to maximize the use of pertinent standard features of the
COTS product in question to circumvent its shortcomings, though most of these standard features are not
designed for reliability purpose. In the following sections, we describe the design of a COTS-based fault-
tolerant bus architecture in detail with respect to bus network topology and fault detection methodologies.

I Bus 1 Leaf 5 I I Bus 1 Leaf 6 I I Bus 1 Leaf 7 I I Bus 1 Leaf 8 I

Figure 3: Bus Network based on Stack-Tree Topology

3 Stack-Tree Topology based Bus Architecture

3.1 Concepts

In the interest of bridging the terminology between network topology and the X2000 MCM-stack packaging
technology [12], we call the proposed topology “stack-tree topology.”

Definition 1 A stack tree is a tree where each stem node is connected to ut most three other nodes among
which at most two are stem nodes.

For example, the trees in Figures 4(a), (c) and (d) are stack trees while that in Figure 4(b) is not.

6

2 3 n-I n 2 3 n-I n In ... 1 1 1 ... JJ
n+l n+2 n+3 2n-1 2n n+l n+2 n+3 211-1 2n

Figure 4: Trees

Definition 2 A complete stack tree is a stack tree where each stem node is connected to at least one leaf
node.

Figure 4(c) depicts a complete stack tree (CST) with n stem nodes. We call this topology simplex
complete stack tree which is denoted as CSTs . Note that the nodes are labeled such that the stem nodes have
ID numbers from 1 to n, while the leaf nodes have ID numbers from n + 1 to 2n. This labeling scheme will
be used in the remainder of the paper. Further, we use n, the number of stem nodes in a CST, to denote the
size of the tree. Note also that the trees in Figures 4(c) and (d) are both CSTs. Based on the CST in Figure
4(c), we can define CST mirror-image as follows.

Definition 3 The mirror-image of a complete stack tree is GI tree obtained by (I) removing the edges con-
necting the stem nodes with ID numbers i and j which satisfj, the relation li - j l = 1; (2) adding edges to
connect the leaf nodes with ID numbers k and 1 which satisfy the relation I k - 1 I = 1.

Clearly, the CST shown in Figure 4(d) is a mirror image of that in Figure 4(c). It is worth to note that a
CST and its mirror image do not have any stem nodes in common. Moreover, based on the above definitions,
it can be shown that the mirror-image of a CST is also a CST.

3.2 Applications

The performance of the X2000 spaceborne systems is scalable and gracefully degradable. Accordingly, our
objective is to develop a fault-tolerant bus network architecture that will allow all the surviving nodes in
the bus network to remain connected in the presence of node failures, without requiring spare nodes. The
fact that a CST and its mirror image do not have stem nodes in common implies that losing a stem node
in one tree will not partition its mirror image. Accordingly, a dual bus scheme comprising a CST and its
mirror image, referred to as CST dual scheme (denoted as CSTD), as shown in Figure 5(a), will be effective
in tolerating single or multiple node failures given that 1) the failed nodes are of the same type (all stem
or all lea0 with respect to one of the CSTs (see Figure 5(b)), or 2) the failed nodes involve both stem and
leaf nodes but they form a cluster at either end (or both) of a CST, which will not affect the connectivity
of the remainder of the tree (see Figure 5(c)). We use terminal clustered stem-leaf failures to refer to the
second failure pattern. Thus, for the cases which involve only the above failure patterns, all the surviving
nodes will remain connected (no network partitioning). On the other hand, if a stem node and a leaf node in
a CSTD based network fail in a form other than terminal clustered stem-leaf failure (see Figure 5(d)), both
the primary and mirror image will be partitioned.

7

. ,. .. .

.. .. ,. ,. ,

Figure 5: CST-Based Dual Bus Network

With the motivation of building a robust bus network architecture capable of tolerating more node fail-
ures (in terms of number and type), we exploit a unique feature of IEEE 1394, namely, the port-disable
capability [l 13. This feature enables the physical connections between the physical layer of a node and the
serial bus cable to become “invisible.” The implication is the following:

1) By using disabled ports, backup connections between nodes can be added without fonning loops
(recall that loops are prohibited by IEEE 1394). By “backup connection,” we mean a serial bus cable
that connects (via disabled ports) two nodes which are not expected to have a direct connection in the
original network configuration (differing from duplicated connection); and

2) Upon fault detection, by disabling physical ports, a failed node will be allowed to be isolated from the
rest of the bus network, and necessary backup link(s) can be activated (by enabling the corresponding
ports) to repair the partitioned network such that messages can be routed in a reconfigured network,
bypassing the failed node.

Consider a bus network based on the CSTs topology with n stem nodes, each of which has one leaf
node, as shown in Figure 6(a). If we add a backup link between any two leaf nodes labeled i and j whch
satisfy the relation [(i mod n) - (j mod n)I = 1, and also add a backup link to connect stem nodes 1 and
n, then we get a topology as shown in Figure 6(b) (an instantiation of the topology in which n = 6).
Because the added connections (dashed edges) are of inactive nature, the bus network remains free of loop
and thus complies with the 1394 tree topology criterion. Figure 6(c) illustrates the bus network from a
3-dimensional perspective, where the network topology resembles a ring. Accordingly, we denote this bus
network configuration as CSTR. To aid the description of failure mechanisms of a CSTR based bus network,
we introduce the following terminology:

Definition 4 A fbiled stem node i and a failed leaf node j in a CSTR based network of size n will form a
cut-type failure i f 1 (j mod n) - (i mod n) I I 1.

Figure 7 illustrates the concepts of cut-type and non cut-type failures. Specifically, the failures comprised
by nodes 2 and 9 in Figure 7(a), nodes 5 and 1 1 in Figure 7(b), and nodes 1 and 12 in Figure 7(c) are cut-type
failures. On the other hand, the node failures shown in Figures 7 (d) and (e) are not cut-type failures.

Further, we use the term clustered failure to refer to the failure of a group of nodes which are adjacent to
each other such that there exists a shortest path between any two failed nodes in the group which does not go
across a surviving node. Figures 8(a) and (b) illustrate the scenarios of clustered and non-clustered multiple
cut-type failures, respectively. Clearly, while the latter failure pattern leads to a bus network partition,

8

n+l w n+2 n+3 -** 3 2n-1 2n

Figure 6: CST-Based Bus Network and Disabled Backup Links

.* """" ". r~"------- " r"
"""_ mi zmi --..

-- .. -""" "** --- ".*
"""" -"""""-

Figure 7: Cut-Type and Non Cut-Type Failure

the former does not even if node 6 also fails, although both scenarios involve multiple cut-type failures.
Therefore, a bus network based on the CSTR topology will be partitioned if and only i f there exist multiple
cut-typefailures which do not constitute a single cluster. Intuitively speaking, as illustrated by Figures 9(a)
and (b), the first cut-type failure (single or clustered) will break the ring structure so that the remainder of the
network becomes a CSTs based structure (with backup links); whereas the second cut-type failure (single
or clustered) will break the CSTs based structure, resulting in network partitioning (see Figure 9(c)). r/f """" --- .[..$ t.i"-;--i --.. f'f

- - - - - - - - - - - - - - -
7'., 8

- - - - - - - - - - - - - - -
1 1 . 4 2 7'. ..? 11,,'12 '. -"""""- --""""-~-

(4 (bJ

Figure 8: Clustered and Non-Clustered Multiple Cut-Type Failures

Figure 10 depicts the simplified X2000 architecture in which the CSTR based bus network described
above is implemented. In the figure, the solid and dashed thick lines marked "1394 Bus" represent the
active and backup links, respectively. During normal operation, the active connections are driven by enabled
ports while the ports of backup connections are disabled to avoid loops. The thin lines marked "I2C Buses"
correspond to the interface for fault detection, isolation and reconfiguration. The 12C bus is a very simple
low-speed multi-drop bus and used only for protecting the 1394 bus. Hence this engineering bus has very
low utilization and power consumption. For additional protection, a redundant bus (consisting of the 1394
and 12C buses) which is a mirror image of the configuration shown in Figure 10 is proposed by our design.

9

6 5

j3-i-i-1- 9 10 11 12 7

Figure 9: CSTR Based Bus Network Partitioning

For clarity of illustration, the connections of the redundant bus are not shown in the figure.

Figure 10: CSTR-Based Fault-Tolerant Bus Network Architecture

4 Devising Fault Detection Mechanisms based on 1394 Standard Features

4.1 Design Principles

Our fault detection, isolation and recovery algorithms for supporting the fault-tolerant bus architecture de-
scribed in Section 3.2 are driven by the following failure modes which are crucial for space applications: l)
invalid messages that contains invalid data detectable by error codes, 2) no response failure mode in which
an expected response to a message does not return in time, 3) babbling failure mode in which uncontrolled
data flooding causes normal communication in the bus network to be blocked or interrupted, and 4) aliasing
failure mode in which multiple nodes wrongly have the same ID.

Based on the coordination between the 1394 and 12C buses (recall that the later is a low-cost engineering
bus aimed at assisting fault detection, isolation and recovery in the X2000 architecture), a comprehensive
set of fault tolerance strategy can be devised [131. Our design principle is to first fully utilize the standard
error detection primitives available in IEEE 1394, and then exploit its other pertinent features to devise addi-
tional fault tolerance mechanisms to compensate inadequacies. Among other fault tolerance methodologies
developed for the bus architecture, we focus on fault detection mechanisms in this section. We first present

the basic means for fault detection and then describe more specific detection strategies from failure mode
perspective. Although the 12C bus plays an important role in most of the algorithms, we omit the detailed
description as it is beyond the scope of this paper.

10

4.2 Basic Means for Fault Detection

4.2.1 Fault Detection Provisions in IEEE 1394

IEEE 1394 provides a number of standard fault detection primitives, including 1) data CRC and packet
header CRC for both isochronous and asynchronous transactions, 2) error codes in acknowledgment packets
to indicate whether a message is successfully delivered, 3) parity bit to protect the acknowledgment packet
itself, 4) error codes in response packets to indicate if the requested action has been completed successfully,
and 5) built-in timeout conditions such as response timeout, arbitration timeout, acknowledgment timeout.

When errors are detected by the target node during the asynchronous transaction, the target node returns
the acknowledgment packet and response packet with error codes to the requesting node. Based on the error
code, the requesting node will carry out user defined fault recovery actions. The error codes specified for the
acknowledgment packet correspond to 1) resource contention causing bus request denial, and 2) data error
and packet-type error detected by the data CRC and header CRC, respectively. The error codes specified
for the response packet correspond to 1) resource contention, 2) data unavailability, 3) unsupported packet
type, and 4) unaccessible address location. More detailed description of these fault detection provisions can
be found in [6,7, 111.

4.2.2 Methods of Heartbeat and Polling

We use heartbeat and polling mechanisms to augment the fault detection capability of IEEE 1394. In par-
ticular, an isochronous cycle start message (see Section 2.3) sent by the cycle master (root) of the 1394 bus
every 125 p s can be utilized as the heartbeat. By letting all the nodes participate monitoring the interval
between cycle start messages, heartbeat will be effective for detecting various failures. For example, when
the root node fails, other nodes will detect a missing cycle. Another example is the babbling node failure
mode. When a node babbles, the cycle start message will be either corrupted or lost, which causes missing
heartbeat. Whereas if a fault causing multiple nodes to have the root ID, the heartbeat interval will become
shorter and irregular because each “faked root” will send its cycle start message.

The root node also sends polling messages periodically to individual nodes by using asynchronous trans-
action. Since an asynchronous transaction requires acknowledgment from the target node, a node failure can
be detected by acknowledgment timeout. To reduce the polling latency, a unique feature specified by 1394a
[l 11 for performance improvement of asynchronous transactions, called “fly-by concatenation,” can be ex-
ploited. With fly-by concatenation, when an acknowledgment packet is en route from a node toward the
root, any intermediate nodes can attach its own packet to the original packet. Hence, when the root polls a
leaf node, all the upstream stem nodes can attach their health status (HSPs) to the acknowledgment packet
from the polled leaf node. Figure 11 illustrates this polling mechanism, where the node IDS are based on the
architecture shown in Figures 3 and 10. As a result, the root needs only to poll the leaf nodes, which reduces
the polling cycle by half. A side benefit of this mechanism is that, the stem nodes, whose error conditions in
general have greater impacts to the integrity of the bus, will be exercised more often and thus have shorter
fault detection latencies.

11

Originating Fly-by concatenated
HSP health status packets

, Leal5
HSP

b Root

b Root

b Root

Leaf 8 Stem2 Stem 3 Stem4
HSP HSP HSP HSP HSP HSP HSP HSP HSP Root

Leal5
HSP b Root

0
0

Figure 11 : Fault Detection based on Fly-By Concatenation

4.2.3 Watchdog Timers

The detection mechanisms described above are supported by a set of watchdog timrs, among which the key

timers are:

CPU Watchdog Timer : A hardware timer to monitor the health of the local CPU. This timer is reset by
the CPU periodically. If it times out, a local reset will be triggered.

Heartbeat Interval Monitor (HIM) : A hardware timer to monitor the heartbeat intervals. It is reset upon
the arrival of a cycle start message.

Heartbeat Lost Timer (HLT) : A hardware timer triggered by the lost of heartbeat. It postpones the re-
covery action by the local node in order to avoid the scenario in which multiple nodes simultaneously
carry out recovery actions.

Poll Response Timer (in Root Node) : A software timer to monitor the response time of polling messages
on the 1394 bus.

4.3 Detection Mechanisms: From Failure Mode Perspective

4.3.1 Invalid Messages Failure Mode

When a packet is transmitted across the serial bus, it may get corrupted, which results in invalid data. As data
corruption can be detected by CRC or parity bit, the message will be retransmitted. If retry is successful,
the normal bus transactions will resume. Otherwise the original requesting node can employ the 12C bus to
isolate the fault and notify the root to initiate the reconfiguration process.

4.3.2 No-Response Failure Mode

A number of no-response failures can be detected if they cause violation of the bus gap timings specified
in the 1394 standard. For example, if a node fails to return or transmit an acknowledgment packet in an

12

asynchronous transaction, it can be detected by the acknowledgment gap timeout. On the other hand, for
the isochronous transactions which do not require acknowledgment packets, no-response failure will not
be detected by gap timing violation. Therefore, if a no-response failure occurs in an isochronous node
or its upstream nodes, the failure may go undetected. In that case, the heartbeat and polling mechanisms
described in Section 4.2.2 will effectively detect the failure. It is worth to note that since a no-response
failure can partition a tree topology based network by blocking the communication between the upstream
and downstream nodes (relative to the no-response node), the 12C bus will be deployed to bypass the failed
node to carry out reconfiguration process.

4.3.3 Babbling Failure Mode

Babbling failure mode refers the scenario in which a node keep sending data uncontrollably. A babbling
node can block all communications in the network and thus results in a serious bus failure. The babbling
failure mode can be detected by the sequence of states on the twisted wire pairs (TPA, TPB) (Section 2.3).
When a babbling node is present, the normal sequence of arbitration, data prefix, data transfer, and data end
will be corrupted. Another detectable form of babbling is a node hold~ng the (TPA, TPB) at the state (1 ,

I), which causes continuous bus resets. And as mentioned in Section 4.2.2, if the babbling node is the root
node, it can be detected through its corrupted or lost cycle start message (the later corresponds to missing
heartbeat).

4.3.4 Aliasing Failure Mode

As described in Section 2.3, the physical ID of each node is assigned dynamically during the bus initial-
ization process. When a node ID is corrupted due to a permanent fault or a single event upset such that it
coincides with the ID of another node in the network, an aliasing failure occurs.

If the root node has the aliasing problem, it will be detected by the non-root nodes when they attempt to
communicate with the root (e.g., for bus arbitration). In particular, upon the detection of the event in which
a node sends its message to multiple roots, a bus reset will be triggered by the 1394 protocol. On the other
hand, if the aliasing failure occurs in a node other than the root, it can be detected by the polling mechanism
described earlier. That is, the root will receive response packets (HSPs) from the two nodes which have the
same ID, in responding to the same polling message. Upon the detection, the root can continue its polling
process and then identify the faulty node by checking the node IDS marked in the topology map (which is
generated during bus initialization).

5 Bus Network Reliability Evaluation

In accordance with the objective of the fault-tolerant bus architecture described in Section 3.2, we define
bus network reliability is the probability that, through a mission duration t , the network remains in a state
such that all the surviving nodes are connected (no network partitioning). Indeed the causes of a node failure
encompass physical layer failure, link layer failure and CPU failure. Moreover, while redundant links (serial

13

bus cables) are permitted in the X2000 architecture, redundant nodes are not allowed due to the power and
weight constraints. As a result, the likelihood of node failure is significantly greater than that of link failure.
Therefore, in the reliability assessment that follows, we concern only node failure. Further, we assume
perfect coverage for fault detection and reconfiguration mechanisms in this evaluation. Before proceeding
to derive solutions of reliability measures, we define the following notation:

R,CST The reliability of a CSTs based bus network.

REsT The reliability of a CSTD based bus network.

RgST The reliability of a CSTR based bus network.

X Poisson failure rate of a node.

t Mission duration.

9 Probability that a node fails during a mission.

We begin with analyzing the CSTs and CSTD based bus network schemes. As explained in Section
3.2, terminal clustered stem-leaf failures in a CST will not affect the connectivity of the remainder of the
tree. Thus we can retrieve a “remainder” from the original CST by eliminating the portion(s) comprised
by terminal clustered stem-leaf failures. This observation leads us to solve RgST and REsT as follows. We
first condition the reliability of a “remainder” by its size k (the number of its stem nodes) which determines
the number of possible positions of the remainder in the original CST, and then we uncondition it. More
precisely, there are (n - k + 1) possible positions for a remainder of size k in a CST of size n.

Since the reliability of a remainder of size k for a CSTs based network is the probability of all the stem
nodes being failure-free, that is, (1 - q)’”, we have

n
R,CST = TI - k + 1)(1 - q)kqq2(n-k)

k = l

Since the reliability of a size-lc remainder in a CSTD based network is the complement of the probability
that at least one stem node and at least one leaf node fail, namely, (1 - (1 - (1 - q)’)’) , the measure RgST
can be expressed as

n
RgST = C(n - k + 1) (1 - (1 - (1 - q)’)’) q2(n-k)

k = l

In both Equations (1) and (2), q = 1 - e-xt is the probability that a node fails during mission time t with
failure rate X.

The solution for RgsT is more difficult because 1) the backup links enable the bus network to tolerate
more node failure patterns, which makes the analysis of the conditions that cause network partitioning more
complicated, and 2) the ring-like structure makes it difficult to ensure that the failure patterns considered in
the model are exhaustive and mutually exclusive.

As explained in Section 3.2, a bus network architecture with a CSTR topology will be partitioned if and
only if there exist multiple cut-type failures which do not constitute a single cluster. In other words, the

14

surviving nodes in a CSTR based bus network will remain connected if there exists at most one cut-type
failure cluster. In the model construction method described below, we view a single cut-type failure as a
special case of cut-type failure cluster (where the size of the cluster is one) and treat a network that is free of
cut-type failure as a special case of remainder (where the sizes of the cluster and remainder equal to 0 and n,
respectively). Specifically, we first condition network reliability by the size of the first cut-type failure cluster
(the number of stem nodes involved in the cluster), then we evaluate the probability that the remainder, which
is the portion of the CSTR based network structure excluding the first cluster, is free of cut-type failure.
This probability is evaluated based on a set of recursive functions that enumerate the combinations and
permutations of failed and surviving nodes in the remainder where cut-type failure is absent. By successively
expanding and reducing the sizes of the failure cluster and the remainder, respectively, we exhaustively
enumerate the probabilities that a remainder is cut-type failure free. Accordingly, the measure we seek to
evaluate can be expressed as

n-1
RZsT = (i) q 2 m F (n - r n) + 2(n - 1)G(n)

m=O

where the index rn represents the size of a cluster, (:) is the number of possible positions of the cluster in
the CSTR based network, q2m is the probability of such a cluster, and F (n - r n) evaluates the probability
that the remainder is cut-type failure free given that the size of the failure cluster is rn. This probability is
solved by a set of recursive functions which “walk through” the remainder backward, ensuring that 1) the
distinct scenarios characterized by the number and positions of failed nodes are exhaustively enumerated,
and 2) the remainder is cut-type failure free. More succinctly,

where Fo (k) , F1 (k) and F2 (k) are the recursive functions that evaluate the probability of a cut-type failure
free remainder of size k , in which 1) both k and k + n are surviving nodes, 2) k is a failed node and k + n
is a surviving node, and 3) k is a surviving node and k + n is a failed node, respectively. The corresponding
expressions are as follows:

Fo(2) = [F& - 1) + Fl(2 - 1) + F2(2 - 1)] (1 - q)2

FO(1) = (1 - d 2

15

To aid further explanation of the model, we introduce the term cut-type failure node pair, abbreviated
as CFP, which refers to the failed node pair that forms a cut-type failure. Per Definition 4 in Section 3.2, a
stem node k potentially could be involved in three differing CFPs, as shown in Figure 12. Further, we call
the CFPs { k , k + n - l}, { k , k + n } and { k , k + n + 1) backward CFP, vertical CFP and forward CFP,
respectively.

k-1 k k + l

Figure 12: Cut-Type Failure Node Pair

It is worth to note that, due to different patterns of the junctions between the cut-type failure cluster
and the remainder, the first term of Equation (3) takes into account not only for the cut-type failure clusters
that are constituted by vertical CFPs but also the cut-type failure clusters that can be viewed as the clusters
formed by forward and backward CFPs, as illustrated in Figures 13(a) and (b).

For the special case where rn = 0, the cut-type failure cluster becomes degenerate while the remainder
spans the entire CSTR based bus network. Although the combinatoric coefficient (G) equals to unity when
rn = 0, different starting positions of the “remainder” in the CSTR based bus network are still taken into
account by the set of recursive functions. That is, Equations (5), (6) and (7) together enumerate the proba-
bilities of all possible sequences of the status of node pairs { k , k + n} such that there is no cut-type failure
formed within the remainder. As a result, different positions of a “remainder” in a CSTR structure (where
m = 0) are “inherently” considered by F (n) . For example, the “remainder” in Figure 14(b) can be viewed
as a result of shifting the starting position of that in Figure 14(a) toward right by one node position - both
cases (where rn = 0) are enumerated by F (n) .

The only exception is the scenario in which m = 0 and a single cut-type failure (a forward or backward
CFP) is formed at the “junction” where the two end of the remainder “merge,” as illustrated in Figure 13(c)
(recall that a single CFP will not partition the network). Since the recursive functions are formulated in a
way such that the cases where the remainder has an internal CFP are excluded, what missed in the first term
of Equation (3) but compensated by its second term are the (n - 1) different positions of this particular CFP.
The coefficient 2 for the second term is necessary because the CFP could be of either a forward or backward
type and the two types of CFP are “symmetric” with respect to structure and probability formulation. G(n)
evaluates the probability that there exists a single (forward or backward) CFP in the CSTR based network.
The derivation of G(n) is based on another set of recursive functions, which are formulated in a manner such
that only the scenarios where the “merge” of the ends of the remainder results in a forward or backward CFP
are considered:

Go(i) = [Go(i - 1) + G l (i - 1) + G2(i - I)] (1 - q) 2

16

Portion of
remainder

G1(i) = [Go(i - 1) + GI (i - I)] q(1 - q)

Gl(1) = 0

Portion of Portion of
remainder remainder

Portion of Portion of Portion of
remainder remainder remainder

Figure 13: Failure Cluster and Remainder

Figure 14: “Positions” of a Remainder of Size n

Applying the models described above, reliability measures for the bus networks based on topologies
CSTs CSTD and CSTR are evaluated with respect to the node failure rate X, size of a bus network n and
mission duration t (in hours). Figure 15 depicts RgST, RgsT and RgST as functions of component node fail-
ure rate X. In this evaluation, the size of the CST-based bus networks n is set to 16 (a 32-node network) and
mission duration t is set to 90,000 hours which implies an over 10-year long-life mission. It can be observed
from the figure that, while CSTD results in an appreciable amount of improvement from CSTs, CSTR leads
to significantly more reliability gain. The quantitative results show that RgST can reach 0.9999999762 if
X = lo-’ and nearly perfect reliability can be achieved if X is lo-’ or lower.

Figure 16 shows the results of the evaluation in which X is set to and t is set to 90,000 hours, while
n is kept as a variable parameter. It is interesting to note that REsT equals to RZsT when n = 2. This is a
reasonable result because for a 4-node network, the node failure patterns that will partition a CSTD based
network coincide with the failure patterns that will partition a CSTR based network. It can also be observed
that the reliability improvement by RiST fiom REsST becomes more significant as the size of the network
increases. This is because more routing alternatives (comprised by active and backup links) are available in
a larger CSTR based network.

17

Figure 15: Bus Network Reliability as a Function of Node Failure Rate (n = 16)

1

0 . 9 8
u
-4

.d 0 . 9 6 ri

n
-4
a
.I

h

p:

x ' 0 . 9 2

0 . 9 4

: u

0 . 9
v)
3 a

0 . 8 8

2 4 6 8 1 0 1 2 1 4 1 6

Bus Network S i z e n (T o t a l Nodes = 2n)

Figure 16: Bus Network Reliability as a Function of Network Size (X =

Figure 17 illustrates the evaluation results of a study in which X and n are set to and 16, re-
spectively, while mission duration t is kept as a variable parameter. It is clear that both R$ST and R$"
become unacceptable for long-life missions. On the other hand, RgST remains very reasonable even when
t = 100,000 (about 11.5 years).

18

1

0 . 9 8

u h

2 0 . 9 6

5 0 . 8 8
m

0 . 8 6

0 . 8 4 ' I
1 0 2 0 3 0 40 50 60 7 0 80 9 0 1 0 0

Mission Duration t (x10 hour) 3

Figure 17: Bus Network Reliability as a Function of Mission Duration (X =

6 Conclusion

To implement fault tolerance in a COTS-based system is becoming a major challenge today when cost
concern has led to increased use of COTS products for critical applications. On the other hand, vendors
remain reluctant to incorporate fault tolerance features into COTS products because doing so is likely to
increase development and production costs and thus weaken the market competitiveness of their products.
Therefore, to cope with the current state of COTS is crucial for us. Accordingly, the significance of our
work reported in this paper is two folds:

1) Our experience demonstrates that thorough evaluation and innovative utilization of pertinent standard
features of' a state-of-the-practice COTS product could enable us to circumvent their shortcomings and
facilitakeffective implementation of a COTS-based fault-tolerant system for critical applications, and

2) Our design and the resulting system which is anticipated to to be delivered to deep-space missions
in the near future may stimulate many other developments of COTS-based highly reliable systems,
which in turn, could encourage the vendors to incorporate fault tolerance features as implementation
options of COTS products. These features will permit a COTS product, in a cost-effective manner, to
satisfy the customers in both critical and non-critical application areas.

How to provide fault tolerance for the 12C bus for protecting of the IEEE 1394 bus is beyond the scope
of this paper. A number of such techniques have been developed at JPL CISM, which will be published in
the near future. Currently, we are designing simulation methods to assess and validate the fault detection
algorithms reported in this paper. Moreover, we are motivated to develop a paradigm that will provide
guidelines for adopting COTS to space applications.

19

7 Acknowledgment

The authors wish to express their appreciation for Mr. William Charlan and Mr. Huy Luong at the Jet
Propulsion Laboratory for their stimulating discussions and refreshing ideas. This work is performed by Jet
Propulsion Laboratory, California Institute of Technology, and funded by NASAs X2000 Program.

References

[l] L. Alkalai, “NASA Center for Integrated Space Microsystems,” in Proceedings of Advanced Deep
Space System Development Program Workshop on Advanced Spacecraft Technologies, (Pasadena,
CA), June 1997.

[2] L. Alkalai, “A roadmap for space microelectronics technology into the New Millennium,” in Proceed-
ings ofthe 35th Space Congress, (Cocoa Beach, FL), Apr. 1998.

[3] L. Alkalai and A. T. Tai, “Long-life deep-space applications,” IEEE Computer, vol. 31, PP. 37-38,
Apr. 1998.

[4] L. Alkalai and S. N. Chau, “Description of X2000 avionics program,” in Proceedings of the 3nd DARPA
Fault-Tolerant Computing Workshop, (Pasadena, CA), June 1998.

[5] T. Shanley and D. Anderson, PC1 System Architecture. Addison Wesley, 1995.

[6] IEEE 1394, Standardfor a High Performance Serin2 Bus. Institute of Electrical and Electronic Engi-
neers, Jan. 1995.

[7] D. Anderson, Firewire System Architecture, IEEE 1394. PC System Architecture Series, MA: Addison
Wesley, 1998.

[8] D. Paret and C. Fenger, The 12C Bus: From Theory to Practice. John Wiley, 1997.

[9] C. S. Raghavendra, A. Aviiienis, and M. D. Ercegovac, “Fault tolerance in binary tree architecture,”
IEEE Trans. Computers, vol. C-33, pp. 568-572, June 1984.

[lo] Y.-R. Leu and S.-Y. Kuo, “A fault-tolerant tree communication scheme for hypercube systems,” IEEE
Trans. Computers, vol. C-45, pp. 641-650, June 1996.

[111 IEEE P1394A, Standard for n High Perfomance Serial Bus (Supplement), Draft 2.0. Institute of
Electrical and Electronic Engineers, Mar. 1998.

[12] K. Sasidhar, L. Alkalai, and A. Chatterjee, “Testing NASA’s 3D-stack MCM space flight computer,”
IEEE Design & Test of Computers, vol. 15, pp. 44-55, July-September 1998.

[13] S. N. Chau et al., “X2000 architecture tiger team meeting review,” Technical Report, Jet Propulsion
Laboratory, California Institute of Technoloty, Pasadena, CA, June 1998.

20

